—ARl

FLIGHTLAB Real Time Application
Tutorial

16 June 2006

Contents

1

Standalone Model oo 1
1.1 Generating an FCM Model 1
1.2 Creating the C Header File and Linking the APT 2
1.3 Creating Applications 5
FCMConsole 6
2.1 Options 6
2.2 Running the Model 7
2.3 Log. . . o o o 7
2.4 Diagnostics 7
2.5 Configuration Lo o 7
2.6 IO . . e 8
2.7 Monitor 8
Communication with External Processes 9
3.1 FLCOMMS e 12
3.2 NetFLC e 13

FLIGHTLAB Real Time Application Tutorial

1 Standalone Model

Generating a standalone model allows a FLIGHTLAB model to be used in end-user
applications without requiring the Scope run-time system. The standalone model
is object code that can be loaded into a C application. Current FLIGHTLAB
standalone models support execution in Windows (32 bit), Linux, and Irix operating
environments. There are three aspects involved in generating a standalone model:
generating the FCM (FLIGHTLAB Code-Gen) standalone model, creating the C
header file linking the API, and creating applications.

1.1 Generating an FCM Model

The FCM model is created through the FLIGHTLAB development system. The first
step in creating an FCM model is to define and create the interface. The interface
allows the model to communicate with the application by sending and receiving
data through varlists. The syntax for creating a varlist is varlist Quarlistname =
followed by the list of variables desired for that varlist, separated by commas. Once
the desired varlist has been created, it must be dumped to the FCM model using the
following syntax: fcmdump(@uarlistname). When creating the desired interface,
the user should keep in mind that there is a default interface that should always be
used when building a standalone model for PilotStation applications. This interface
is located in the PilotStation directory under the scripts directory in a file called
pws-configure.exc.

Once the script for generating the interface has been created, the standalone
model needs to be generated. To do this, the FLIGHTLAB model should be loaded
into the development system. The interface script should then be executed. Once
this is done, the initial conditions should be set and the model should be trimmed.
This will put the model in a good condition for loading into the application. The
final step is to dump the FLIGHTLAB model into an FCM model. The syntax for
this is femdump(“modelname.fcm”);. This will generate a standalone model
data file in the current working directory. An example script for dumping a model
into an FCM file follows:

//File: fl-fcm.exc
//Desc: Generation of an FCM model

//Load a model
exec ("$FL_DIR/flme/models/articulated/arti-rgd-3iv-qs.def",1);

//Trim the model in hover default condition
exec("xamodeltrim.exc",1);

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

//Configure a model for use with FCMDRIVER
path ("$FL_DIR/fcmdriver/scripts")
exec ("$FL_DIR/fcmdriver/scripts/fcmdriver.configure",1)

//Configure a model for use with PilotStation
exec ("$PWS_DIR/scripts/pws-configure.exc",1)

//Initialization
init;

//Dump the model
femdump ("arti.fcm")

//EOF

This script loads a model called arti-rgd-3iv-gs.def, trims it, configures the FCM
driver, sets the default PilotStation interface, and then dumps the model to a stan-
dalone FCM model called arti.fcm.

1.2 Creating the C Header File and Linking the API

Once the FCM model has been created, the interface between the standalone model
and the application needs to be built. This consists of two pieces: the C language
header file, which defines the relationship between the varlists and the C data struc-
tures, and the Application Programming Interface (API), which is the programming
interface between the model and the user application.

For the header file, there should be a one to one correspondence between the
Scope varlists and the C data structures. For example, if a varlist is constructed as
follows:
pushg(world_model_airframe_cpg_xaout)

varlist Q@STATES "Aircraft states" = posxi,posyi,poszi, vxb,vyb,vzb,
phi,theta,psi, p,q,r;
fcmdump (@STATES) ;
popg;
a corresponding C data structure must exist in the header file as follows:
struct STATES /* Aircraft states */
{
double posxi; /* Inertial X [ft] =/
double posyi; /* Inertial Y [ft] =/
double poszi; /* Inertial Z [ft] =/

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

double vxb; /* Vx of body [ft/sec] */
double vyb; /* Vy of body [ft/sec] =*/
double vzb; /* Vz of body [ft/sec] */
double phi; /* Euler phi [rad] */
double theta; /* Euler theta [rad] */
double psi; /* Euler psi [rad] */

double p; /* Body roll rate, p [rad/sec] */
double q; /* Body pitch rate, q [rad/sec] */
double r; /* Body yaw rate, r [rad/sec] */

};
Note that the FLIGHTLAB data are all double precision and, therefore, the C data
structures must be double precision as well.

When working with ART to develop an FCM model, FLIGHTLAB developers
will often generate a “magic number” in the header file. This number is then checked
against the header file when the model is loaded in order to ensure that the correct
header file is being used and that the interface will work correctly. To disable this
check, users can set the “magic number” to 0000.

FLIGHTLAB provides an API utility with which to interface the standalone
model with user applications. The API handles the communication between the
standalone model and the user-created driver for their application. When linking
the API, there are two important things to keep in mind:

e The system header file, fcm.h, which is located in $FL_DIR /include/, must

be included in all C code.

e Link with -Ifcm (FL_DIR/libFL_MACHTYPE/libfcm.a).

There are several data types used in the API.

e FCM _FILE: This is the master handle.

¢ FCM_MODEL: This is the model instance handle. It contains the complete

state of a model instance.

¢ FCM _OPERATION: This is an operation handle. It is used to invoke

simulation operations, such as stepping the model.

e FCM_VARLIST: This is a variable list handle. It is used to access structured

data

e FCM_FIELD: This is a field handle;

Using these data types, the model can be loaded, operations can be run, and data
operations can be performed.
e (Call fcm_open to obtain an FCM_FILE handle.
e Obtain other handles from the FCM_FILE, such as variable lists, operations,
and fields.

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

Call fcm_create to create an FCM_MODEL instance.

Call fcm_destroy() to destroy an FCM_MODEL instance.

Call fem_close() to free all resources associated with an FCM_FILE.
To obtain operation handle:

FCM_OPERATION op_handle = fcm lookup_operation(fcm, “op-
name”)

To call an operation:
fcm_invoke(model_handle,op_handle)

where model_handle is the model instance handle obtained from fcm_create().
To obtain a variable list handle:

FCM_VARLIST vl handle = fcm_lookup_varlist(fcm, “@name”)
To read model data:

fcm _read(model, vl _handle, &structvar, size)

To write model data:

fcm_write(model, vl_handle,&structvar, size)

To save model test conditions at a checkpoint:
fcm_checkpoint(model_handle, filename)

To restore model test conditions from a checkpoint:

fcm _restore(model_handle, filename)

To reload a model:

fcm _reload(model_handle)

The following is an example C API:

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial 5

#include "fcm.h"
... /* Initialization: */
FCM_FILE fcm fcm_open("articulated.fcm");
FCM_OPERATION op_step = fcm_lookup_operation(fcm,"STEP") ;
FCM_VARLIST vl_states = fcm_lookup_varlist(fcm,"@STATES");
FCM_MODEL model fcm_create(fcm);
double state_buf [N_STATES] ;
. /* Run-time, once per frame: */
fcm_invoke (model, op_step);
fcm_fetch(model, vl_states, state_buf, N_STATES);
... /* Cleanup: */
fcm_close(fcm) ;

1.3 Creating Applications

There are four other items that must be addressed in order to fully integrate the
standalone model with the user application.

e Set the environment variable for the system component library.

e Develop a driver to interface between the user application and the API.

e Include the system header file in the driver.

e Create a makefile for compiling the standalone model with the appropriate

header file and interface.

In order to run the standalone model, the environment variable FL_FCM_COMPONENTS
must be pointed to the system component library file. The command to do this is

setenv FL_FCM_COMPONENTS $FL_DIR/lib/linux/flcomp.so
The $FL_DIR/lib/linux/ directory is the Linux glibc-2.3 library, which is the de-
fault library for FLIGHTLAB 3.1. FLIGHTLAB also supports three other operating
systems: Linux glibe-2.2 $FL_DIR/lib/linux-glibc22, Unix $FL_DIR /lib/irix6,
and Microsoft Windows $FL_DIR/lib/win32. The user should set their environ-
ment variable to the appropriate directory.

A driver must be written in order to develop the user’s application. An exam-
ple driver, driver.c, can be found in $FL_DIR /examples/fcm/. Note that the
system header file, fcm.h, must be included in the driver. This file can be found in
$FL_DIR/include/.

Finally, a makefile can be prepared to facilitate the generation of the standalone
model and compilation of the driver program. An example, Makefile, can be found
in $FL_DIR /examples/fcm/.

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

2 FCMConsole

The FCMConsole is a graphical interface for running fcm dynamic models. It
runs the models only; any visual system to be used with the simulation must be
started separately. To start the interface, type fcmconsole & at the command
prompt. This will bring up the graphical interface window for the FCMConsole.

2.1 Options

By default, the graphical interface starts in the Options section of the interface.
Once the interface window appears, the desired fcm model and configuration files
need to be selected. To do this, click on the “...” button to the right of either the
Model or Config fields. A new window will appear that will allow the user to
browse through the directory structure to find the desired model or configuration
file. Highlight the desired file by clicking it and then click the “Open” button.
Once the appropriate files have been selected, there are five options that the
user may select from:
e Verbose? Selecting this option will generate more detailed messages in the
log screen when the “Start” button is pressed.
e Enable network? Selecting this option will enable the model to utilize
netflc for data communication over a local area network.
e Enable PWS? Selecting this option will enable the model to communicate
with PilotStation.
e Pilot inputs:
— None Selecting this option means that there is no input device for the
model.
— Use control box? Selecting this option will allow the user to fly the
model using the control box.
— Use joystick? Selecting this option will allow the user to fly the model
using a joystick.
— Pilot inputs from remote host? Selecting this option will allow the
user to fly the model from a remote host.
Once the desired options have been selected, click the “Start” button to launch the
model. As soon as the button is pressed, the interface will switch to the Log area
and a series of messages will be displayed. Any error messages will be shown in red.
Note that the Config and Monitor sections of the interface are now accessible.

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

2.2 Running the Model

To run the model and begin flying, click the “Run” button. To pause or reset the
model to the last trim point, click the “Pause” or “Reset” buttons, respectively.

2.3 Log

The log screen displays status messages when the simulation is started using the
“Start” button in the Options screen as well as when the model is stopped by
pressing the “Stop” button.

2.4 Diagnostics

The Diagnostics screen can be utilized to check the interface for the model. Af-
ter clicking on the Diagnostics tab, the different available diagnostic checks are
available through the Diagnostics menu.
e Trace
— commands
— model.controls
— model.trim
— off This option turns the tracing function off.
— pilotin
— simtime
— udpcmd
e List FLCOMMS This performs the flcomms -1 command and lists the
output in the Diagnostics screen.
¢ FCM Information This performs the fcminfo -icLlo command and lists
the output in the Diagnostics screen.
e Shared memory status This performs the ipcs command and lists the
output in the Diagnostics screen.
e Clear FLCOMMS This performs the flcomms -stc command, which clears
the shared memory.
¢ Remove shared memory This performs the ipcs -m command, which
removes the shared memory blocks.

2.5 Configuration

It is possible to configure some initial conditions for the simulation. To do this,
click on the Config tab in the interface screen. This will bring up the configuration
screen, which consists of three parts:

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

e Aircraft
— X Inertial position
— Y Inertial position
— 7 Inertial position
— Heading
— Airspeed
— Gross weight
e Environment
— Wind magnitude
— Wind azimuth
— Sea level pressure
— Sea level temperature (degF)
For fcm models with no ship modeled, all the configuration entries will be zero.
Once the configuration has been set as desired, press the “Apply” button at the
bottom of the screen to apply the settings to the simulation. The model can then
be trimmed, if desired, by pressing the “Irim” button.

2.6 IO

This screen presents the user with several tabs that contain fields which present the
values of pre-selected model variables. To change an input value, enter the desired
value in the field and press the “Apply” button. To get the current value of an
output value, press the “Refresh” button. These can be done in real time.

2.7 Monitor

A real time monitor has been implemented in the FCMConsole interface. It can
be configured to display in real time any variable contained within a FLIGHTLAB
CPG group. Note that it is not necessary to use the monitor in order to run the
model. To access the monitor, click on the Monitor tab in the interface screen.
By default, there are no variables in the monitor when it is first opened. A blank
screen is displayed with two buttons labeled with a right facing triangle followed by
three dots, one in the top right hand corner and one in the bottom left hand corner.
The top button enables the user to add multiple panes to the monitor as well as
to add variables to each screen. The bottom button is for adding switch monitors,
which appear as buttons along the bottom of the monitor screen. To add a pane or
to add/delete variables to/from an existing pane, click on the top button. This will
open a new window labeled “Configure slider...” At the top of this window is a field
labeled “Pane.” This field tells the user which pane they are configuring. To the

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

right of this field is a button labeled “New.” This allows the user to add a new pane
to the monitor. Below the “Pane” field is another field labeled “Find.” This allows
the user to search in the variable list for a specific variable. Below this is a window
containing a list of all the variables available for the real time monitor. To the right
are two buttons: “Add” and “Delete.” To the right of these buttons is another
window which contains all the variables that have been added to the monitor. By
default, this window is empty. To add a variable to this window, click on the desired
variable in the left hand window and click the “Add” button. A variable can be
removed from the monitor list by clicking it in the right hand window and clicking
“Delete.” Below these two windows are four data entry boxes:

e Field: The name of the currently selected variable is listed in this box.

e Min: The user may specify the desired minimum value for the selected vari-

able to be displayed in the real time monitor.

e Max: The user may specify the desired maximum value for the selected

variable to be displayed in the real time monitor.

e Current: This box displays the current value of the selected variable.
When the real time monitor has been configured as desired, click the “Apply”
button. This will close the “Configure slider...” window and apply the changes to
the real time monitor screen in the FCMConsole interface.

The switch configuration screen works in much the same way, except that there
are no panes to deal with and variables are only available from FLIGHTLAB CON-
FIGPAR groups. At the top of the screen is a “Find” field that works the same
way as for the pane configuration. Below that are the same two windows separated
by the “Add” and “Delete” buttons. Below this are two fields, rather than four.

e Field: The name of the currently selected variable is listed in this box.

e Label: The user can specify a label for the switch button. The default setting

is the variable name.
When the switches have been configured as desired, click the “Apply” button. This
will close the “Switch configuration...” window and apply the changes to the real
time monitor screen in the FCMConsole interface. When the switch is off, the
respective button will be a gray color. When the switch is turned on, it will change
to green. A red color indicates that the specified variable could not be found in the
fcm model.

3 Communication with External Processes

There are two communication protocols that can be used either with the FLIGHT-
LAB development system or a standalone model. The first protocol is FLCOMMS, a

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial 10

shared memory based interprocess communications facility used to transfer data be-
tween a FLIGHTLAB model and external applications. The other is NetFL.C, which
uses UDP to broadcast over the local area network to synchronize the FLCOMMS
blocks on all participating hosts. Figures 1 and 2 show a graphical representation
of how FLCOMMS and NetFLC manage the data communication, respectively.

/ FLGDMME/ ! shared memaory

BODYSTATES PILOTIN INSTRUMENT

N N

Control loaders < Visual system

Figure 1: Graphical Representation of FLCOMMS Functionality

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

Scope

)
L

FLCOMMS

netflc

)

Metwork

/' AN

nettlc @D

E
L

FLCOMMS FLCOMMS

@ Control Loaders

Figure 2: Graphical Representation of NETFLC Functionality

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

12

3.1 FLCOMMS

FLCOMMS was designed specifically for real time applications. It consists of a
collection of data blocks, each of which is defined by name, size, type, and “magic
number.” Each data block corresponds to a varlist that was created as discussed in
Section 1. For various options that can be used with FLCOMMS, type flcomms -h
at the command prompt. When running a model through the development system,
each FLCOMMS data block must be attached using the following commands:

e attach(@uarlistname,*“w”) for outputs (the “w” tells the model to write

data to the FLCOMMS block)

e attach(@Quarlistname,“r”) for inputs (the “r” tells the model to read data

from the FLCOMMS block)
When running a standalone model, the fcmdump command is used as described
in Section 1.

As with the standalone model, an API is required to interface FLCOMMS with
the user’s application. FLIGHTLAB provides the utility to facilitate the applica-
tion. When linking the API, there are two important things to keep in mind:

e The system header file, flcomms.h, which is located in $FL_DIR /include/,

must be included in all C code.

e Link with -Iflcomms ($FL_DIR/libS$FL_MACHTYPE/libflcomms.a).
There are several operations provided by the API utility.

Call fic_attach(NULL,0); at program startup.

Call flc_open(...) to acquire data block handles.

Use flc_read(...) and flc_write(...) to transfer data.

Call flc_close(...) to release a handle (optional).

Call flc_detach(); before exiting the program (not optional).

To connect the user application to the FLCOMMS data blocks, use the following
syntax:

FLC_HANDLE h = flc_open("name", size, magic, mode_flag | type_flag);
where
e name is the data block name.
e size is the size in bytes of data block.
e magic is the magic number.
e flags specifies the mode and type as follows:
— FLC_MODE_READ opens data block for reading.
— FLC_MODE_WRITE opens the block for writing.

— FLC_TYPE_DOUBLE, FLC_TYPE_INT, etc. specify the data type.

— FLC_TYPE _MIXED: anything else

TUT-REALTIME 1.1 16 June 2006

FLIGHTLAB Real Time Application Tutorial

— Flags are combined with the bitwise-OR operator (]).
Note that Scope always uses FLC_TYPE_DOUBLE and that name is the variable
list name without a leading @ sign (all uppercase).
Reading and writing operations are performed as follows:
e flc_read(handle, dst, nbytes);
e flc_write(handle, src, nbytes);
— handle is the FLC_HANDLE returned from flc_open(...)
— src and dst may be an array or pointer to a structure.
— nbytes is the size of the data block in bytes.
e flc_ready(read_handle) returns 1 if the data block has been written to since
the last time the handle was read.
An example FLCOMMS driver can be found in $FL_DIR /examples/flcomms/
with a filename of flcomms-example.c. As with the standalone model, a makefile

needs to be written in order to compile the API. An example, Makefile, can be
found in $FL_DIR/examples/flcomms/.

3.2 NetFLC

NetFLC uses broadcast UDP over the local area network to synchronize FLCOMMS
blocks on all participating hosts. It periodically broadcasts current values of all data
blocks being written to on the host and listens for updates from other hosts. It also
handles floating point and integer format conversions between different architec-
tures. For a list of NetFLC options, type netflc -h at the command prompt.

TUT-REALTIME 1.1 16 June 2006

